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The total responses experienced by a system are often due to distinct and independent contributors. For example,

during atmospheric flight a launch vehicle and its spacecraft will experience loads from sources such as dynamic

pressure, turbulence/gust, buffet, and thrust oscillation and vectoring. Because of the complexity of the phenomena,

each contributor must be established in separate analyses. To obtain a total, the separate results must be combined.

There are several combination equations, and three of these are assessed herein bymeans ofMonteCarlo simulations

and mathematical analysis. It will be demonstrated that the equation based on the envelope functions of Gaussian

response time histories provides a reasonable bound and that the form of the equation in which all contributors are

root-sum-squared will frequently underpredict the correct total.

Nomenclature

B�t� = vector-valued function of buffet load time histories
�bx;i;j�t� = base excitation to first single-degree-of-freedom

system for ith loads-combination-equation run and
jth Monte Carlo draw

�by;i;j�t� = base excitation to second single-degree-of-freedom
system for ith loads-combination-equation run and
jth Monte Carlo draw

CLT = central-limit-theorem-based loads combination
equation

ENV = envelope-function-based loads combination equation
Fx��� = cumulative distribution function of x

�f = natural frequencies of single-degree-of-freedom
system, Hz

fx��� = probability density function of x
G = one-sided power spectral density, g2=Hz
G�t� = vector-valued function of gust load time histories
k = k factor corresponding to a specified enclosure/

confidence level
mn = nth spectral moment
N� = expected number of positive maxima for a given

duration
p = enclosure probability
Q = quality factor for single-degree-of-freedom systems
RSS = root-sum-square-based loads combination equation
rENV = envelope-function loads-combination-equation ratio
rRSS = root-sum-squared loads-combination-equation ratio
ry = frequency ratio of narrowband responses, �fy= �fx
T = time duration, s
TO�t� = vector-valued function of thrust-oscillation load time

histories
t = time, s
u = sum of the envelopes

Ŵi;99=90 = 99=90 estimate of the sum of the peaks ŵi;j over
index j

ŵi;j = sum of the peaks, equal to x̂i;j � ŷi;j

X̂i;99=90 = 99=90 estimate of peak responses x̂i;j over index j
xi = ith random variable

x̂i = ith peak of random variable xi
x̂i;j = maximum of �xi;j�t�
�xi;j�t� = response of first single-degree-of-freedom system for

ith loads-combination-equation run and jth
Monte Carlo draw

~x�t� = envelope function of response x�t�
Ŷi;99=90 = 99=90 estimate of peak responses ŷi;j over index j

ŷi;j = maximum of �yi;j�t�
�yi;j�t� = response of second single-degree-of-freedom system

for ith loads-combination-equation run and jth
Monte Carlo draw

Ẑi;99=90 = 99=90 estimate of the peaks of the sum ẑi;j over
index j

ẑi;j = maximum of �zi;j�t�
�zi;j�t� = total response �xi;j�t� � �yi;j�t�, for ith loads-

combination-equation run and jth Monte Carlo draw
� = gain factor applied to response y�t�
�f = bandwidth of narrowband response, Hz
" = Cartwright–Lonquet–Higgins probability distribution

parameter
� = mean of a random variable
�̂x;i = sample mean of x̂i
� = variable of integration
�p = p quantile corresponding to a normalized Rayleigh

distribution
� = standard deviation of a random variable
! = circular frequency, rad=s
� = positive maxima

Subscript

H = Hilbert transform

Superscripts

^ = peaks or maxima
~ = envelope function

Introduction

D URING atmospheric flight, a launch vehicle and its payload
will experience severe structural loading frommultiple sources

[1–4]. Loads due to that portion of the vehicle’s angle of attack that
vary relatively slowly (and hence do not excite the elastic modes of
vibration) are often referred to as wind-only, or static-aeroelastic,
loads. Loads that are due to themore rapidly changing, nonpersistent
wind features are referred to as turbulence and/or gust loads. Loads
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due to the formation of shock waves, shock wave oscillations, flow
separation, attached turbulent boundary layers, and the interaction
between these phenomena are referred to as buffet loads. In addition,
a launch vehicle’s liquid engines and/or solid rocket motors also
induce slowly varying and vibratory loads.

For many launch vehicles, structural reliability requirements can
only be met by restricting the winds through which they are allowed
to fly [5–9]. For these vehicles, the predicted flight loads andwhether
the vehicle will be allowed to launch will not be known until
additional analyses are performed just before launch.

The day-of-launch analyses often include developing a steering
profile that minimizes the launch vehicle’s angle of attack relative to
the winds measured close to the launch window. The vehicle is then
analytically flown through the measured wind, and static-aeroelastic
loads are computed. The static-aeroelastic loads are then combined
with the previously calculated turbulence/gust, buffet, and non-
deterministic thrust-induced loads [10–14]. Loads due to the dif-
ference between the nominal parameters assumed in the analyses and
those of the actual vehicle as flown and loads due to the expected
change in thewind from the time it is measured towhen the vehicle is
launched are also included.

Combination of load contributors can be accomplished by means
of either a Monte Carlo combination of computed time histories, a
Monte Carlo combination of loads drawn from appropriate distri-
butions, or a loads combination equation (LCE). Figure 1 illustrates
how Monte Carlo analyses can be used to simulate the flight
experience of a single launch vehicle a large number of times and
hence is a reasonably accurate analytical means of establishing
statistical loads. However, the computational burden can be such that
more efficient approaches are used during design loads analyses and
during the time-critical day-of-launch analyses. The purpose of this
work is to assess three loads combination equations by comparison
with Monte Carlo analyses and to better understand the properties of
the equations by means of simulations and mathematical analysis.

Loads Combination Equations

We begin with the central limit theorem [15]. If x1; x2; . . . ;
xi; . . . ; xn are independent variables having distributions with means
�i and finite variance �2i , then for large n, the distribution of a new
random variable z, given by

z�
X
i

xi

approaches a Gaussian distribution, with mean

�z �
X
i

�i

and variance

�2z �
X
i

�2i

The enclosure level of z can then be computed as
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�����
�2z

q
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i
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�������������X
i

�2i

r
�
X
i
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��������������������X
i

�k�i�2
r

(1)

In Eq. (1), k can be selected to yield the desired enclosure level. If
we have a finite number of contributors that do not have the same
statistical distributions, as is the case for many loads events, then k
will not be the same for each contributor for a given enclosure and
confidence level, and Eq. (1) can only be applied in an approximate
manner:

Zk� �
X
i

�i �
���������������������X
i

�ki�i�2
r

(2)

Fig. 1 In determining expected flight loads that can occur over a short period of time (e.g., during the transonic time of flight), the quantities of most

interest are the statistical descriptions of peak positive andpeak negative values.MonteCarlo analyses can be used to simulate flight experience of a single

launch vehicle a large number of times and establish statistical loads. The resulting distributions have nonzero means.
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Load contributors for finite populations must be established as
enclosures with associated confidence levels. Therefore, the disper-
sed portion of each contributor must be approximated as

ki�i � X̂i;99=90 � �i (3)

In Eq. (3), for illustration purposes, X̂i;99=90 represents the 99%

enclosure, 90% confidence level (99=90) of the load parameter X̂i.
Throughout the paper we will use an enclosure level of 99% with

90% confidence. This will be done for consistency and comparison
purposes only. Any other enclosure and confidence level could have
been chosen, and in actual application, the enclosure and confidence
levels are established by a system’s reliability requirements and
sample sizes.

Three forms of Eq. (2) will be assessed. The first, which we will
refer to as the root-sum-squared (RSS) combination equation, is
obtained by assuming that the mean term is zero and that all
contributors are dispersed:

RSS �X̂1;99=90; . . . ; X̂n;99=90� �
�����������������������Xn
i�1

X̂2
i;99=90

s
(4)

The second equation, which we will refer to as the central limit
theorem (CLT) combination equation, is obtained by establishing the
means �̂i and dispersed portions from the distributions of the peaks
of the contributors:

CLT �X̂1;99=90; . . . ; X̂n;99=90� �
Xn
i�1

�̂i �
��������������������������������������Xn
i�1
�X̂i;99=90 � �̂i�2

s
(5)

The third equation, which we will refer to as the envelope-function
(ENV) combination equation, is obtained by developing the means
~�i from the envelope functions of the time histories. For a discrete
Gaussian time series, the envelope function can be calculated using
the discrete Fourier transform (see the Appendix for details). The
dispersed portion of each load is obtained by subtracting its mean
from the corresponding enclosure:

ENV �X̂1;99=90; . . . ; X̂n;99=90� �
Xn
i�1

~�i �
��������������������������������������Xn
i�1
�X̂i;99=90 � ~�i�2

s
(6)

For a narrowband response to zero-mean Gaussian excitation, the
envelope function and the time-history peaks will have Rayleigh
probability density functions [16,17]. The mean will be given by���������
�=2

p
�, where � is the rms value of the time history. Therefore,

~� i �
����
�

2

r
�i (7)

It will be shown later that the preceding formulations (6) and (7) will
also yield bounding results for the response of multi-degree-of-
freedom systems.

To help clarify the various definitions, Fig. 2 shows a typical
narrowband response time history, its envelope function, and the
peak value. The figure also shows the probability density functions
of the time history and envelope function. As can be seen, and as will
be demonstrated later, the time-history data points are Gaussian-
distributed, and the envelope function has a Rayleigh distribution.

Monte Carlo Simulations

The three loads combination equations described previously were
assessed bymeans ofMonteCarlo simulations of simple systems and
a complex spacecraft. For the simple systems, each Monte Carlo
simulation combined acceleration time histories from two indepen-
dent single-degree-of-freedom (SDOF) systems. For the complex

spacecraft system, turbulence/gust, buffet, and thrust-oscillation load
time histories were computed and combined.We add that the forcing
functions, and hence responses in these simulations, were essentially
Gaussian. From each Monte Carlo simulation, the 99=90 tolerance
bounds of the individual and combined peak responses were deter-
mined. These were then compared with the estimates obtained with
the three combination equations.

Simple Systems

The statistics of the individual and combined responses from two
SDOF systems that were base-excited with broadband Gaussian
input formed the basis for the simple system’s Monte Carlo simu-
lations. LCE simulation cases were conducted to investigate the
effects of frequency separation, amplitude differences, and time
duration. The SDOF system that produced the low-frequency
response �x�t� had a natural frequency that was fixed at 5 Hz for all

simulations. The second system’s natural frequency �fy was set to 6,
11, 19, or 37 Hz, depending on the study being performed. The
response of the second system is designated �y�t�. Damping was
set to 1% of critical for both oscillators. The broadband, zero-mean,

Gaussian excitation �bx�t� and �by�t� were uncorrelated and had
variance equal to unity. To simulate the effects of combining re-
sponses having different relative magnitudes, �x�t� and �y�t�were first
normalized to have unit variance by scaling them by the theoretical
� given by Miles’s equation [17]:

� �
���������������
�

2
�fQG

r
(8)

Then a gain factor � was multiplied to the normalized �y�t�. For each
case, � was defined to be 0.1, 0.25, 0.5, 1, 2, 4, or 10. In Eq. (8),
Q� 50 corresponds to 1% damping, and G� 0:002 g2=Hz is the
one-sided power spectral density (PSD) level of the base input having
unit variance and sample rate equal to 1000 samples/second.
To determine the effects of time duration T, LCE cases having T
equal to 0.5, 1, 2, 4, 8, or 16 swere performed. Hence, by considering

all possible combinations of �fy, �, and T, a total of 4 � 7 � 6� 168
LCE cases were investigated.

For each LCE case in which �fy, �, and T were fixed, the statistics
of the LCEs were established by performing 1000 Monte Carlo
simulations. Each Monte Carlo simulation (indexed by i) consisted

of 3000 randomly generated (indexed by j) base excitations �bx;i;j�t�
and �by;i;j�t�. The responses �xi;j�t� and �yi;j�t� were numerically
calculated by Duhamel’s method. The sum of the responses �zi;j�t� �
�xi;j�t� � �yi;j�t� represents the combined or total response. For the jth
draw, the following peak responses were calculated:

x̂i;j � max
0	t	T
� �xi;j�t��; ŷi;j � max

0	t	T
� �yi;j�t��

ẑi;j � max
0	t	T
��zi;j�t��; ŵi;j � x̂i;j � ŷi;j (9)

For the ith LCE run, the 99=90 tolerance bounds of the peak
responses were determined using ordered statistics:

Fig. 2 Typical narrowband response time history and its envelope

function. The peak value is also indicated. The distributions of the time

history and its envelope function are also shown.
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X̂i;99=90 � 99=901	j	3000fx̂i;jg; Ŷi;99=90 � 99=901	j	3000fŷi;jg

Ẑi;99=90 � 99=901	j	3000fẑi;jg; Ŵi;99=90 � 99=901	j	3000fŵi;jg

(10)

Herein, we shall simply refer to Ẑi;99=90 as the 99=90 total load, and to
ẑ and ŵ as the peak of the sum and sum of the peaks, respectively.

For the CLT form of the LCE, the means of the peak responses
were estimated by the sample means:

�̂ x;i �
1

3000

X3000
j�1

x̂i;j; �̂y;i �
1

3000

X3000
j�1

ŷi;j (11)

The LCEs for the ith run were then calculated as

RSS �X̂i;99=90; Ŷi;99=90� �
�����������������������������������
X̂2
i;99=90 � Ŷ2

i;99=90

q
(12)

CLT�X̂i;99=90; Ŷi;99=90� � �̂x;i � �̂y;i

�
�������������������������������������������������������������������������
�X̂i;99=90 � �̂x;i�2 � �Ŷi;99=90 � �̂y;i�2

q
(13)
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r
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2
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Ŷi;99=90 �

����
�

2

r
�

�
2

s
(14)

For each LCEcase, histograms of the probability density functions
(PDFs) of x̂, ŷ, ẑ, and ŵ were calculated and plotted. Figure 3 shows

the results of a simulation for �fy � 37 Hz,�� 1:0, andT � 8 s. The
histograms and PDFs were scaled so that their locations along the
abscissa could be compared easily. Observe that because the sum of
peaks bounds the peak of the sum, the PDFof ŵ lies to the right of the
PDF corresponding to ẑ. As expected, the histogram of the 99=90

total loads, Ẑi;99=90, lies essentially to the right of the 99 percentile,

Ẑ99%. Also shown are the histograms corresponding to the 1000RSS,
ENV, and CLT LCE estimates. Although the ENV LCE reasonably

bounds Ẑi;99=90, the RSS LCE estimates underpredict not only the

99=90 estimates Ẑi but also Ẑ99%. On the other hand, we see that
the CLT LCE conservatively bounds the 99=90 total loads. In fact,

the CLT LCE essentially provides 99=90 estimates of the sum of

peaks, Ŵi;99=90.
Because the LCE is intended to be a tool that combines the

statistical responses from various loads events, it is prudent that
the LCE provide, in effect, a bound of the 99=90 total loads from the
Monte Carlo simulation. For this purpose, the following LCE ratios

with respect to Ẑi;99=90 were compared:

RSS�X̂i;99=90; Ŷi;99=90�
Ẑi;99=90

;
ENV�X̂i;99=90; Ŷi;99=90�

Ẑi;99=90

CLT�X̂i;99=90; Ŷi;99=90�
Ẑi;99=90

(15)

Figure 4 compares the average LCE ratios for �fy � 37 Hz,
T � 8 s, and � varying over the values 0.1, 0.25, 0.5, 1, 2, 4, and 10.
For these cases, the RSS form of the LCE underpredicts the 99=90
total loads, whereas the ENV and CLT LCEs provide bounding
estimates. Observe that the extremum of each curve occurs when
�� 1:0: that is, when responses of comparable magnitude are being
combined. For �� 1, the RSS LCE had the greatest underprediction
with an average of about 6%. The ENV LCE provided a bound that,
on average, is 2–6% conservative. The CLT LCE produced more

conservative estimates of Ẑi;99=90, exceeding the target values by
5–21%.

As can also be ascertained from Fig. 4, the three forms of the LCE
considered herein are consistent in that their ratios approach unity as
one of the response contributors becomes dominant. This behavior is
evident in plots of the averageLCE ratios and can be ascertained from
the functional form of the LCEs. Moreover, it provides us with a
simple requirement on the form of the LCE, and allows us to rule
out other LCEs that violate this constraint. For example, an LCE
that is defined by increasing the RSS by a scale factor would be
inadmissible.

To illustrate the variability of theMonte Carlo results, Fig. 5 shows

the LCE ratios for all 1000 simulations for the case �fy � 37 Hz,
�� 1, and T � 8 s. The results indicate that the random seed used to
initiate theMonte Carlo runs can produce about 5% variability in the
results with respect to the 99=90 total loads. Observe that the RSS
form of the LCE consistently underpredicted theMonte Carlo results
(and in some cases, by as much as 10%). On the other hand, the ENV
and CLT LCEs provided bounding results with no underpredictions.
We add that over all 168 cases and 1000 LCE runs, the ENV form of
the LCE did not underpredict the 99=90 total load. Figure 6 presents
the standard deviations of the LCE ratios for �fy � 37 Hz and
T � 8 s, and for this case, the greatest variability occurs when
combining loads of comparable magnitudes.

Figure 7 shows the effects of frequency separation. The average

LCE ratios for T � 8 s as a function of � are shown for �fy � 6, 11,

Fig. 3 Probability density functions of peak responses and LCE

histograms for �f y � 37 Hz,�� 1, andT � 8 s. PDFs andhistograms are

scaled for clarity. Light-blue squares, pink circles, green pluses, and
purple triangle curves correspond to the PDFs of x̂, ŷ, ẑ, and ŵ,
respectively. The vertical lines represent the 99 percentiles of the peak ẑ
and ŵ responses. Fig. 4 Average LCE ratios vs � for �f y � 37 Hz and T � 8 s.
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19, and 37 Hz. Observe that the RSS and ENV LCE ratios decrease
with increasing frequency separation for � 	 1: that is, when the
higher-frequency response is not dominating. On the other hand,
the LCE ratios are less sensitive when either the lower- or higher-
frequency responses dominate. The CLT LCE ratios have less
variability with respect to frequency separation.

The effects of time duration are shown in Fig. 8. The average

LCE ratios vs � for �fy � 37 Hz, and T � 0:5, 1, 2, 4, 8, and 16 s are
plotted. The data indicate that, on average, regardless of duration,
the RSS LCE underpredicted the desired enclosure level. On the
other hand, the ENV LCE and the CLT LCE enveloped the desired
levels, with the former providing a more reasonable bounding
estimate of the 99=90 levels. Note that the CLT LCE is the most
sensitive to time duration and becomes more conservative as T
increases. The RSS and ENV forms of the LCE appear to be less
sensitive to time duration, with the ENV LCE being the least
sensitive.

Complex System

Monte Carlo simulations that combined loads computed for
950 load parameters, such as moments and shears, of a complex
spacecraft system, were performed and the results were compared
against loads obtained with the three loads combination equations
described previously. The combination involved three distinct
types of loads: 1) turbulence/gust, 2) buffet, and 3) engine thrust
oscillation. These events were selected because they represent actual
loading conditions. Furthermore, turbulence/gust loads have energy
content below 10 Hz, thrust-oscillation loads have predominant
energy content up to roughly 30 Hz, and low-frequency buffet loads

have energy content up to roughly 60 Hz. This provided for a
combination of loadswith varying frequency content andmagnitude.
The analyses were performed for the time of flight at which the
turbulence/gust loads tend to be highest.

Turbulence/gust loads were computed using 686 turbulence
forcing functions. These were developed by extracting the non-
persistent rapidly varying features [18–20] from measured wind
profiles. The loads were obtained by numerically integrating the
coupled system structural dynamic equations ofmotion that included
aeroelastic effects and the launch vehicle control system. Each of the
resulting response load time historieswas 8 s long.Hence, for each of
the 950 load parameters, 686 8-s-long time histories were available
for the Monte Carlo simulations.

Buffet loads were computed with 50 30-s-long forcing-function
time-history sets. These were developed from power spectral
densities that represented the buffet forces acting at various stations
along the length of the vehicle. The force time histories were
generated by inversely transforming the PSDs and randomizing the
phase. No correlation was assumed between the resulting force time
histories. The buffet loadswere computed in the time domain [21,22]
by numerically integrating the equations of motion and using the
resulting acceleration and displacement time histories to compute the
950 spacecraft load-parameter time histories. Hence, there were 50
30-s-long time histories for each of the 950 load parameters available
for the Monte Carlo analyses.

Thrust-oscillation forcing functions were generated from a family
of existing thrust and lateral force time histories that had been

Fig. 6 Standard deviations of LCE ratios for �f y � 37 Hz and T � 8 s.

Fig. 7 Frequency-separation effects. Average LCE ratios vs � for T �

8 s and �f y � 6, 11, 19, and 37 Hz.

Fig. 5 LCE ratios vs LCE runs for �f y � 37 Hz, �� 1, and T � 8 s.

Fig. 8 Time-duration effects. Average LCE ratios vs � for �f y � 37 Hz
and T � 0:5, 1, 2, 4, 8, and 16 s.
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developed fromflight data. Similar to the buffet forcing functions, the
PSDs of these time histories were calculated, and from these PSDs,
756 sets of 8 s axial and lateral force time histories were synthesized
by inverse transformation. The loads were obtained by numerically
integrating the coupled system equations of motion and using the
resulting acceleration and displacement time histories to compute the
950 spacecraft load-parameter time histories. Therefore, for each of
the 950 load parameters, there were 756 8-s-long time histories
available for the Monte Carlo simulations.

Let the vector-valued functions G�t�, TO�t�, and B�t� represent
the 950 load time histories for turbulence/gust, thrust oscillation,
and buffet, respectively. We shall adhere to the convention of
using boldfaced letters to represent vector-valued variables. Each
Monte Carlo simulation consisted of 3000 sums of these response
time histories, which were randomly drawn from their respective sets
of computed responses. For each Monte Carlo draw, load time
histories GiG

�t�, TOiTO
�t�, and BiB

�t� were randomly selected from
their sets that contained 686, 756, and 50 cases, respectively. From
the selected 30 s buffet response, an 8 s segment, BiB;�i

�t�, was
extracted at random. The three 8 s time histories were then summed.
Figure 9 illustrates the combination of time histories for the ith draw.
For each draw, the maximum (and minimum) of the turbulence/gust

Ĝi, buffet B̂i, thrust oscillation dTOi, and total responses Ẑi were
determined. For the 950 load parameters, the RSS, CLT, and ENV
LCEs were calculated using the 99=90 peak responses that were
determined by ordered statistics. The means of the maximum (and
minimum) responses that were used in theCLT form of the LCEwere
calculated as

�̂gust �
1

3000

X3000
i�1

Ĝi; �̂TO �
1

3000

X3000
i�1

dTOi

�̂buffet �
1

3000

X3000
i�1

B̂i (16)

The standard deviations that were used in the ENV form of the LCE
were computed from the average root-mean-squared values across
all time histories for each event:

�gust �
1

686

X686
i�1
�i;gust; �TO �

1

756

X756
i�1
�i;TO

�buffet �
1

50

X50
i�1
�i;buffet (17)

For each load parameter, the LCEs for themaximawere calculated
by (18–20)

RSS �Ĝ99=90;dTO99=90; B̂99=90� � 
Ĝ
2
99=90 �dTO2

99=90 � B̂2
99=90�1=2

(18)

ENV�Ĝ99=90;dTO99=90; B̂99=90� �
����
�

2

r
��gust � �TO � �buffet�

�
��

Ĝ99=90 �
����
�

2

r
�gust

�
2

�
�dTO99=90 �

����
�

2

r
�TO

�
2

�
�
B̂99=90 �

����
�

2

r
�buffet

�
2
�
1=2

(19)

CLT�Ĝ99=90;dTO99=90; B̂99=90� � ��̂gust � �̂TO � �̂buffet�

� 
�Ĝ99=90 � �̂gust�2 � �dTO99=90 � �̂TO�2

� �B̂99=90 � �̂buffet�2�1=2 (20)

The LCEs for the minima were determined similarly.
Figure 10 presents the ratios of the loads combination equations

relative to the Monte Carlo results for each of the 950 load
parameters. Observe that the RSS LCE underpredicted approxi-
mately half of the load parameters. The ENV LCE resulted in each
load parameter being equal to or greater than theMonte Carlo results,
with about 15% conservatism on average. The CLT LCE generally
yielded higher combined loads than the ENV LCE, bounding the
Monte Carlo results by approximately an average of 35%.

To determine if the underprediction by the RSS LCE could be due
to the seed used to initiate the Monte Carlo draws, 2 of the 950 load
parameters that had an underprediction by the RSS LCE were
selected, and the Monte Carlo analyses were repeated 1000 times,
each starting with a different seed. To simplify the problem, only
the turbulence/gust and thrust-oscillation loads were combined.
As can be ascertained from Fig. 11, in which all 1000 cases are
plotted, the large majority resulted in the RSS LCE underpredicting
the Monte Carlo results.

Loads-Combination-Equation Analytical Bounds

As a result of theMonte Carlo analyses presented previously, there
is strong empirical evidence that the ENV LCE provides, for all
practical purposes, a reasonable bound to the desired statistical
enclosure levels. On the other hand, the previous results indicate that
the RSS LCE often underpredicts the correct total load. The purpose

Fig. 9 Combination of turbulence/gust, thrust-oscillation, and buffet
load time histories for one load parameter and the ithMonteCarlo draw.

For each draw, the maxima and minima of the load contributors and of

the total response were determined and recorded for statistical analysis.

Fig. 10 Ratios of RSS, env, and CLT LCEs to Monte Carlo results for

950 spacecraft load parameters (load transformation matrix rows):
a) maxima and minima results are shown as circles and squares,

respectively, and b) histograms of percent of load parameters vs

LCE ratio.
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of this section is to present arguments that establish the bounding
properties of the ENV LCE and explain the underpredictions
observed with the RSS LCE.We first show that the form of the ENV
LCE is based upon summing the envelope functions of the response
time series. The arguments show that for the simple systems
considered, the RSS LCE and ENV LCE bound, in an instantaneous
sense, any enclosure level of the peaks of the total response. Because
physical responses must be analyzed over a time period at which
load events are predicted to occur, time-duration effects must be
accounted for by theLCEbounds.We then discuss how time duration
and frequency separation affect the statistics of peaks and explain the
properties of the RSS and ENV LCEs observed for simple systems.

Let x�t� and y�t� be zero-mean stationary Gaussian responses
with probability density functions

fx�v� �
1������
2�
p

�x
exp

�
�v2
2�2x

�
; fy�v� �

1������
2�
p

�y
exp

�
�v2
2�2y

�
(21)

Because we are interested in combining responses with different
relative amplitudes, we shall henceforth assume that �x � 1 and
�y � �, where 0< � <1. Assume that x�t� and y�t� are
independent, and let z�t� � x�t� � y�t�. Then z�t� has the PDF

fz�v� �
1������
2�
p

�z
exp

�
�v2
2�2z

�
; �z �

��������������
1� �2

p
(22)

Consider the Hilbert transform of x�t� defined by the Cauchy
principal value (p.v.),

xH�t� � p:v:
1

�

Z 1
�1

x���
t� � d� ≜ lim

"!0�

1

�

Z
jt��j>"

x���
t � � d� (23)

Then xH�t� is also a zero-mean stationary Gaussian process having
identical distribution and is uncorrelated to x�t�. The envelope
function ~x�t� is then defined by

~x�t� �
����������������������������
x2�t� � x2H�t�

q
(24)

It can be shown [23] that ~x�t� has the Rayleigh distribution:

f ~x�v� � v exp
�
�v2
2

�
(25)

Figure 2 shows a typical narrowband response and its envelope
function with their respective PDFs plotted vertically along the
ordinate axis. Similarly, define theHilbert transforms yH�t� and zH�t�
and the associated envelope functions:

~y�t� �
����������������������������
y2�t� � y2H�t�

q
; ~z�t� �

���������������������������
z2�t� � z2H�t�

q
(26)

The PDFs of ~y�t� and ~z�t� are, respectively,

f ~y�v� �
v

�2
exp

�
�v2
2�2

�
; f~z�v� �

v

1� �2 exp
�
�v2

2�1� �2�

�
(27)

The mean and variance of these Rayleigh distributions are given
by [15]

� ~x �
����
�

2

r
; � ~y �

����
�

2

r
�; �~z �

����
�

2

r ��������������
1� �2

p
varf ~xg � 4 � �

2
; varf ~yg � 4 � �

2
�2

varf~zg � 4 � �
2
�1� �2� (28)

Integrating theRayleigh PDFs leads to the following distributions for
~x�t�, ~y�t�, and ~z�t�:

F ~x�v� � 1 � exp

�
�v2
2

�
; F ~y�v� � 1 � exp

�
�v2
2�2

�
F~z�v� � 1 � exp

�
�v2

2�1� �2�

�
(29)

Hence, for a specified enclosure probability p, Eq. (29) leads to thep
quantiles:

~Xp � F�1~x �p� � �p; ~Yp � F�1~y �p� � ��p
~Zp � F�1~z �p� �

��������������
1� �2

p
�p (30)

where �p �
���������������������������
�2 ln �1 � p�

p
.

Now introduce the sum of the envelopes, u�t� � ~x�t� � ~y�t�. By
virtue of independence,

�u �
����
�

2

r
�1� ��; varfug � 4 � �

2
�1� �2� (31)

Also, independence of ~x�t� and ~y�t� allows us to calculate the PDF
of u�t�:

fu�v� � f ~x � f ~y�v� �
Z
v

0

f ~x�v � r�f ~y�r� dr

� 1

�2

Z
v

0

r�v � r� exp
�
�r2
2�2
���v � r�

2

2

�
dr (32)

The distribution function of u�t� is then obtained by direct
integration:

Fig. 11 LCE ratios vs LCE run from Monte Carlo simulation

combining turbulence/gust and thrust-oscillation responses: a) load
parameter 1 and b) load parameter 2.
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Fu�v� �
Z
v

0

fu�s� ds� 1 � e�v2=2�2 � e
�v2=2 � e�v2=2�2

1� �2

�
����
�

2

r
�v

�1� �2�3=2 e
�v2=2�1��2�

�
erf

�
�v���������������������

2�1� �2�
p �

� erf

�
��1v���������������������

2�1� �2�
p ��

(33)

where

erf �v� � 2����
�
p

Z
v

0

e�s
2

ds

Therefore, we can represent thep quantile for u�t� by the usual mean
plus k-sigma form:

Up � F�1u �p� � �u � kp���
��������������
varfug

p
�

����
�

2

r
�1� ��

� kp���
������������
4 � �
2

r ��������������
1� �2

p
(34)

where the factor kp��� is defined implicitly.
Observe that the triangle inequality implies that the envelope of the

sum is less than or equal to the sum of the envelopes; that is,

~z�t� 	 ~x�t� � ~y�t� � u�t� (35)

Therefore, we obtain the following inequality involving the
distributions:

F~z��� 
 Fu���; � 
 0 (36)

This is a direct consequence of Eq. (35) and monotonicity, which
imply

f~z 	 �g � fu 	 �g ) probf~z 	 �g 
 probfu 	 �g (37)

Hence, we obtain the following inequality for the p quantiles:

Up 
 ~Zp (38)

Figure 12 illustrates the inequalities in Eqs. (36) and (38).
For an enclosure probability p, the ENV form of the LCE,

proposes that we add the means and root-sum-square the dispersed
terms:

ENV� ~Xp; ~Yp� � �� ~x � � ~y� � 
� ~Xp � � ~x�2 � � ~Yp � � ~y�2�1=2

�
����
�

2

r
�1� �� �

�����p � ����
�

2

r ���� ��������������
1� �2

p
(39)

We claim that

ENV � ~Xp; ~Yp�>Up (40)

Comparing Eqs. (34) and (39), it suffices to show that for 0< � 	 1,�����p � ����
�

2

r ����>kp���
������������
4 � �
2

r
(41)

The preceding inequality was verified numerically for 0 	 p 	
0:999 and 0< � 	 1 in 0.001 increments. Figure 13 shows that for

each p, j�p �
���������
�=2

p
j is equal to the maximum of kp���

���������������������
�4 � ��=2

p
over �, which occurs when �! 0.

The incorporation of the statistics of the response peaks into the
LCE estimates requires us to relate theRayleigh distribution to that of
the peaks. It is well known that the peaks of a narrowband response
will have a Rayleigh distribution, whereas those for a broadband
response will have a distribution that tends toward normal. This

statement was made precise by Cartwright and Longuet–Higgins
[24], who extended the work of Rice [25] and determined the
probability distributions of peaks for a stationary random process.

Let z�t� be a stationary Gaussian process with root mean square
�z �

������
m0

p
. Then the probability distribution of its normalized

maxima, v� ẑ=�z, is given by

fẑ�v� �
"������
2�
p e

�v2
2"2 �

�������������
1 � "2
p

2
ve
�v2
2

�
1� erf

�
v
�������������
1 � "2
p ���

2
p
"

��
0 	 " 	 1 (42)

where " is a measure of spectral width and is defined in terms of the
moments of the PSD, Gz�!�:

"2 � 1 � m2
2

m0m4

; mk �
Z 1
0

!kGz�!� d! (43)

Integrating Eq. (42) yields the cumulative distribution function:

Fẑ�v��
1

2

(
1� erf

�
v���
2
p
"

�
�

�������������
1� "2

p
e�

v2

2

�
1� erf

�
v
�������������
1� "2
p ���

2
p
"

��)
(44)

Fig. 12 Distribution functions of ~z�t� and u�t� and the corresponding p
quantiles.

Fig. 13 Comparison of factors for the dispersed terms for

ENV� ~Xp; ~Yp� and Up.
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Figure 14 plots fz�v� and Fz�v� for several values of ". Note that
" values of 0 and 1 correspond to Rayleigh and Gaussian
distributions, respectively.

Equations (42) and (44) describe the statistics of the maxima ẑ,
which include both positive and negative maxima. However, to
assess peak loads, the positive maxima and negativeminima must be
considered separately. For the purposes of this discussion, we will
assume symmetry of the extrema and determine the probability
distribution for the positive maxima. Let ẑ� denote the positive
maxima, then

fẑ��v� �
fẑ�v�

prob�ẑ 
 0� �
fẑ�v�

1 � Fẑ�0�
� 2

1�
�������������
1 � "2
p fẑ�v�

v 
 0

Fẑ��v� �
2

1�
�������������
1 � "2
p 
Fẑ�v� � Fẑ�0��

� 2

1�
�������������
1 � "2
p

�
Fẑ�v� �

1 �
�������������
1 � "2
p

2

�
(45)

Figure 15 plots fẑ��v� and Fẑ��v� for several values of ". Observe
that the Rayleigh distribution is bounding in the sense that it yields
larger p quantiles than any of the positive maxima distributions;
that is,

~Z p 
 Ẑ�p � �zF�1Ẑ��p� (46)

We verified Eq. (46) on a multimode response for which the PSD
(normalized to unit mean square) is shown in Fig. 16a.We calculated
the envelope function and identified the peaks for a 1000 s, zero-
mean, Gaussian time series z�t� that was synthesized from the PSD.
Figure 16b shows a portion of z�t�, its envelope function, maxima,
and positivemaxima.As shown in Fig. 17, the histogram estimates of
the distributions of ~z�t�, ẑ, and ẑ� compare well with their respective
theoretical functions.

Together, Eqs. (38), (40), and (46) imply the following chain of
inequalities:

ENV � ~Xp; ~Yp�>Up 
 ~Zp 
 Ẑ�p (47)

Equation (47) establishes the bounding property for the ENV form of
the LCE. Additionally, by Eqs. (30) and (46), we have

RSS � ~Xp; ~Yp� � ~Zp 
 Ẑ�p (48)

Moreover, if x�t� and y�t� are responses of SDOF systems, then x̂�

and ŷ� will essentially be Rayleigh-distributed, and

~X p � X̂�p ; ~Yp � Ŷ�p (49)

Therefore, Eqs. (47) and (48) yield the inequality
Fig. 14 Distribution of maxima: a) probability density function and

b) cumulative distribution function.

Fig. 15 Distribution of positive maxima: a) probability density

function and b) cumulative distribution function.
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ENV �X̂�p ; Ŷ�p �> RSS�X̂�p ; Ŷ�p � 
 Ẑ�p (50)

that establishes the bounding properties of the RSS LCE and ENV
LCE for the instantaneous combination of responses. Note the subtle
implication of Eq. (50) that asserts that the ENV LCE will strictly
bound any enclosure level of ẑ�.

The Monte Carlo analyses for simple systems demonstrated that
whereas the ENV LCE bound remained in force for various time
durations and frequency separations, the RSS LCE bound did not.
This is because the instantaneous estimates do not account for the
statistics ofmultiple peaks that depend upon duration, frequency, and
correlation, due to the physical properties of the system.

For a given time duration T, the expected number of positive
maxima is given by [24,25]

N� �
�
1�

�������������
1 � "2
p

4�

������
m4

m2

r �
� T (51)

Let N�x represent the expected number of positive maxima in a
duration T for x̂�. For simplicity, assume that the peaks are
independent. Then the distribution of the largest positive peak x̂�max is
defined by

FX̂�max
�v� � 
FX̂��v��N

�
x (52)

Hence, the quantile corresponding to an enclosure probability p is

X̂ �max;p � �xF�1X̂��p
1

N�x � (53)

Similarly, the p quantiles for ŷ�max and ẑ
�
max are given by

Ŷ �max;p � �yF�1Ŷ��p
1

N�y �; Ẑ�max;p � �zF�1Ẑ��p
1

N�z � (54)

We now evaluate RSS�X̂�max;p; Ŷ
�
max;p� and ENV�X̂�max;p; Ŷ

�
max;p�

for a simple system, where x�t� and y�t� are narrowband responses

about frequencies �fx and �fy, respectively, and with bandwidth equal
to�f. As in theMonte Carlo simulation with the simple systems, we

shall assume that �fy 
 �fx and that �x � 1 and �y � �, with 0<

� <1. Let ry � �fy= �fx denote the frequency ratio. If�f� 1, then

x̂� and ŷ� are essentially Rayleigh-distributed and, moreover,N�x �
T �fx and N

�
y � ryN�x . Hence,

X̂ �max;p �
��������������������������������
�2 ln �1 � p

1

N�x �
q

; Ŷ�max;p � �
�����������������������������������
�2 ln �1 � p

1

ryN
�
x �

q
(55)

Calculating the spectral moments of z�t� � x�t� � y�t� yields, after
neglecting the �f2 terms, the " parameter that describes the
distribution of ẑ,

Fig. 16 Multimode response: a) PSD and b) close-up of time series,

envelope function, maxima, and positive maxima. Fig. 17 Distribution functions of envelope function, maxima, and

positivemaximaof amultimode response: a) probability density function

and b) cumulative distribution function.

SAKO, KABE, AND LEE 2347



"2 � �2

1� �2 �
�r2y � 1�2
1� �2r4y

(56)

and also the expected number of positive maxima ẑ�,

N�z �
�
1�

�������������
1 � "2
p

2

�������������������
1� �2r4
1� �2r2

s �
� N�x � rzN�x (57)

Therefore, we obtain the p quantile for ẑ�max over the duration T:

Ẑ �max;p �
��������������
1� �2

p
F�1
Ẑ�
�p

1

rzN
�
x � (58)

Using Eqs. (55–58), the LCE ratios

rRSS �
RSS�X̂�max;p; Ŷ

�
max;p�

Ẑ�max;p

; rENV �
ENV�X̂�max;p; Ŷ

�
max;p�

Ẑ�max;p

(59)

were calculated for p� 0:99; �fx � 5 Hz; �fy � 6, 11, 19, and 37 Hz;
and T � 8 s as a function of �� 0:1, 0.25, 0.5, 1, 2, 4, and 10. The
ratios are shown in Fig. 18. Observe that the analytical approxi-
mation, which does not account for correlation between peaks due to
the physical properties of the systems, does a good job of predicting
the general behavior of the empirical LCE ratios shown in Fig. 7.

Conclusions

Three combination equations were assessed by means of
Monte Carlo simulations of simple systems and a complex space-
craft and by mathematical analysis that provides insight and more
rigor to the conclusions developed from the numerical simulation
results. It was demonstrated that the equation that is based on the sum
of the envelope functions of the response time histories provides, for
all practical purposes, a reasonable bound of the total. The formof the
equation thatmost nearly follows the central limit theorem provides a
more conservative estimate than that obtained with the envelope
functions. It was also shown that the form of the equation in which
all contributors are root-sum-squared frequently underpredicts the
desired total. Therefore, it is concluded that the root-sum-squared
combination of independent contributors obtained from time-history
responses is not appropriate and that the envelope-function form of
the combination equation should be used.

Appendix: Envelope-Function Calculation

The procedure used to calculate the envelope functions of time
histories is summarized herein. Let x�t� be a zero-mean band-limited

signal with Hilbert transform xH�t�. Then the analytic signal z�t� �
x�t� � ixH�t� has Fourier transform [26]:

Z�!� �

8<: 2X�!�; ! > 0

X�0�; !� 0

0; ! < 0

where Z�!� and X�!� are the Fourier transforms of z�t� and x�t�,
respectively. Moreover, the complex modulus of z�t� is equal to the
envelope function ~x�t�.

For a sampling period Ts, let x�tn�, where tn � nTs (n� 0; . . . ;
N � 1) denotes the discrete signal corresponding to x�t�. We shall
assume that N is even. The envelope-function calculation is based
upon computing the discrete analog of the continuous analytic
signal z�t� as described by Marple [26]:

Zm �

8>><>>:
X0; m� 0

2Xm; 1 	 m< N
2

XN=2; m� N
2

0; N
2
<m 	 N � 1

where Xm is the mth discrete Fourier transform coefficient of x�tn�:

Xm �
1

N

XN�1
n�0

x�tn� exp
�
�i 2�nm

N

�
The discrete analytic signal is then defined by the inverse Fourier
transform:

z�tn� �
XN�1
n�0

Zm exp

�
i
2�nm

N

�
which yields the discrete envelope function ~x�tn� � jz�tn�j.
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